2014年度 後期 リフレクションペーパー

学科名	情報学科						
科目名	情報数学						
科目区分		専門科目		単位数	2	開講時期	I 年次
必修・選択 の別				 目(ネットワーク: 目(ソフトウエア:			
担当者	金光 滋 Shigeru KANEMITSU						
授業の 到達目標 (シラパスから)	・ベクトル空間に関連する基本概念を理解し、与えられた基底をもつ部分空間を構成できる。 ・行列・1次写像などの概念を把握でき、合成写像を求めることができる。 ・基本変形の計算ができる。 ・生成行列・パリティチェック行列から符号を求めることができる。 ・行列の対角化などの計算ができる。						
日程と内容	9/18 導入講義、授業の進め方と概要および成績評価の仕方。 9/25 ベクトルーベクトルの和、差、スケイラー倍、その結果としての1次結合の計算を身につける。 10/2 体-四則演算ができる代数的範囲としての体(タイ)の初歩を講述する。 10/9 ベクトル空間-重ね合わせの原理がなりたつ代数的範囲としてのベクトル空間を学ぶ。 10/16 部分空間・積空間-与えられた代数的範囲から同じ演算に関して新しい代数的範囲を部分空間、カルテシアン積として構成する。 10/23 基底・次元-ベクトル空間における線形関係から基底・次元を解説する。 10/30 行列-行列の演算を学ぶ。 11/6 行列と1次写像-行列により定まる1次写像、およびその合成写像から行列の積に至る過程を講述する。 11/13 行列式-正方行列の場合に行列式の計算を摩なう。 11/13 行列式 II-行列式の平行六面体としての体積としての定義および3次の対称群による定義を学ぶ。 11/27 有限体-元数が有限個の体は、素数ベキの個の元からなるGF(q)の形であることを学ぶ。 12/14 線形符号-GF(q)のn個の直積の部分空間として線形符号を導入する。 12/11 線形符号の例-元数2、4等の場合に具体的な線形符号を求める。 12/18 生成行列-与えられた情報符号をもつ生成行列およびその基本変形による標準形を学ぶ。 1/15 まとめ						
	11/13 行列式- 11/20 行列式] 11/27 有限体- 12/4 線形符号 12/11 線形符号 12/18 生成行 1/15 まとめ	I −行列式の平行 元数が有限個の −GF (q) のn個の 号の例−元数2、 刊−与えられた情	テ六面体としての か体は、素数べき 直積の部分空間 4等の場合に!	n体積としての5 キの個の元から7 として線形符号 具体的な線形符 ⁹	なるGF(q)の形で ・を導入する。 号を求める。	であることを学ん	ప .
成績評価基準	11/13 行列式- 11/20 行列式! 11/27 有限体- 12/4 線形符号 12/11 線形符号 12/18 生成行列 1/15 まとめ 1/22 定期試験 定期 職時 報告書・課	I −行列式の平行 元数が有限個の −GF (q) のn個の 号の例−元数2、 刊−与えられた情	テ六面体としての か体は、素数べき 直積の部分空間 4等の場合に!	の体積としての3 キの個の元から7 として線形符号 具体的な線形符号 生成行列および・	なるGF (q) の形で ・を導入する。 ・号を求める。 その基本変形に 技 評価	であることを学んよる標準形を学	ప .
	11/13 行列式- 11/20 行列式! 11/27 有限体- 12/4 線形符号 12/11 線形符号 12/18 生成行列 1/15 まとめ 1/22 定期試験 定期 職時 報告書・課	I -行列式の平行元数が有限個の -GF (q) のn個の 号の例-元数2、 列-与えられた情 (90分) 試験 レボート 選	テ六面体としての か体は、素数ベニ 直積の部分空間 4等の場合に具 青報符号をもつ空	の体積としての2 キの個の元から7 として線形符号 具体的な線形符・ 主成行列および・ 実 ボクセンラ	なるGF (q) の形で ・を導入する。 ・号を求める。 その基本変形に 技 評価	であることを学んよる標準形を学	ぶ。
授業到達目標	11/13 行列式- 11/20 行列式 11/27 有限体- 12/4 線形符号 12/11 線形符号 12/18 生成行列 1/15 まとめ 1/22 定期試験 臨時 報告書・ 譲	I -行列式の平行元数が有限個の -GF (q) のn個の 号の例-元数2、 列-与えられた情 (90分) 試験 レボート 選	テ六面体としての か体は、素数ベニ 直積の部分空間 4等の場合に具 青報符号をもつ空	の体積としての2 キの個の元から7 として線形符号 具体的な線形符・ 主成行列および・ 実 ボクセンラ	なるGF (q) の形で ・を導入する。 ・号を求める。 その基本変形に 技 評価	であることを学んよる標準形を学	ぶ。
授業到達目標 の達成度	11/13 行列式- 11/20 行列式1 11/27 有限体- 12/4 線形符号 12/11 線形符号 12/18 生成行 1/15 まとめ 1/22 定期試験 座時 報告書・課 千分に達成した	I -行列式の平行元数が有限個の -GF (q) のn個の 号の例-元数2、 列-与えられた情 (90分) 試験 レボート 選	テ六面体としての か体は、素数ベニ 直積の部分空間 4等の場合に具 青報符号をもつ空	の体積としての2 キの個の元から7 として線形符号 具体的な線形符・ 主成行列および・ 実 ボクセンラ	なるGF (q) の形で ・を導入する。 ・号を求める。 その基本変形に 技 評価	であることを学んよる標準形を学	ぶ。
授業到達目標 の達成度 反省点	11/13 行列式- 11/20 行列式- 11/27 有限体- 12/4 線形符号 12/18 生成が 1/25 定期試定 臨書・ 報告・ 本 十分に達成した	I - 行列式の平符 元数が有限個の - GF (q) のn個の 号の例-元数 2 、 削- 与えられた情 (90分) 試試験 レボート 題 習	テ六面体としての か体は、素数ベニ 直積の部分空間 4等の場合に具 青報符号をもつ空	の体積としての2年の個の元から7年の個の元から7年として線形符号として線形符号とはのな線形符号をはいて、東京の一方では、東外の子がりでは、東外の子がりでは、東の子がりでは、東外の子がりでは、東外の子がりでは、東外の子がりでは、東外の子がりでは、東外の子がりでは、東の子がりでは、東の子がりでは、東の子がりでは、東の子がりでは、東の子がりでは、東の子がりでは、東のでは、東の一方では、東の一方では、東の一方では、東の子がりでは、東のでは、東の一方では、東のでは、東のでは、東のでは、東のでは、東のでは、東のでは、東の子がりでは、東のでは、東のでは、東のでは、東のでは、東のでは、東のでは、東のでは、東の	なるGF (q) の形で で導入する。 ででである。 での基本変形に 技 評価 アーション	であることを学んよる標準形を学	ぶ。