リフレクションペーパー

学科名	電気通信工学科						
科目名	集積回路						
科目区分		専門科目		単位数	2	開講時期	3年後期
必修・選択 の別	必修科目(組込みシステムコース)/選択科目(電気エネルギーコース)/選択必修科目(情報システムコース)						
担当者	江上 典文						
授業の 到達目標 (シラバスから)	・情報産業における集積回路の技術革新が果たす役割を説明できる。(A9) ・半導体素子の基本構造と動作原理を説明できる。(A8) ・CMOSロジックゲートとメモリ素子の基本構造と動作の仕組みを説明できる。(B4) ・集積回路の設計フローと製造工程の基本を記述できる。(B4,C2) ・集積回路のシステム化技術と直面する技術課題を説明できる。(C2)						
日程と内容	9/19 導入講義:授業の進め方と概要の説明、成績評価法、集積回路とは何か、情報産業における位置						
成績評価基準	臨時 報告書・ 課	試験 試験 レポート 選	70% 0% 0% 0% 30%	実 部外 ブレゼンラ 言	テーション		
授業到達目標 の達成度	・情報産業における集積回路の技術革新が果たす役割を説明できる:達成 ・半導体素子の基本構造と動作原理を説明できる:達成 ・CMOSロジックゲートとメモリ素子の基本構造と動作の仕組みを説明できる:達成 ・集積回路の設計フローと製造工程の基本を記述できる:達成 ・集積回路のシステム化技術と直面する技術課題を説明できる:達成						
反省点	授業見学でも指摘されたように、学生の理解度をより高めるための配慮(配布資料のカラー化や、画像、映像の活用)に若干、欠けていた。						
来年度の計画	配布資料をカラー化するとともに、著作権などに抵触しない範囲で、画像や映像などを授業に取り入れていきたい。						
授業評価アン ケートに対する コメント	アンケートでは「わかりやすかった」との意見が多かった。今後も、わかりやすい講義を心がける。						